Shortcut-Stacked Sentence Encoders for Multi-Domain Inference
نویسندگان
چکیده
We present a simple sequential sentence encoder for multi-domain natural language inference. Our encoder is based on stacked bidirectional LSTM-RNNs with shortcut connections and fine-tuning of word embeddings. The overall supervised model uses the above encoder to encode two input sentences into two vectors, and then uses a classifier over the vector combination to label the relationship between these two sentences as that of entailment, contradiction, or neural. Our ShortcutStacked sentence encoders achieve strong improvements over existing encoders on matched and mismatched multi-domain natural language inference (top singlemodel result in the EMNLP RepEval 2017 Shared Task (Nangia et al., 2017)). Moreover, they achieve the new state-of-theart encoding result on the original SNLI dataset (Bowman et al., 2015).
منابع مشابه
Salience Estimation via Variational Auto-Encoders for Multi-Document Summarization
We propose a new unsupervised sentence salience framework for Multi-Document Summarization (MDS), which can be divided into two components: latent semantic modeling and salience estimation. For latent semantic modeling, a neural generative model called Variational Auto-Encoders (VAEs) is employed to describe the observed sentences and the corresponding latent semantic representations. Neural va...
متن کاملSentEval: An Evaluation Toolkit for Universal Sentence Representations
We introduce SentEval, a toolkit for evaluating the quality of universal sentence representations. SentEval encompasses a variety of tasks, including binary and multi-class classification, natural language inference and sentence similarity. The set of tasks was selected based on what appears to be the community consensus regarding the appropriate evaluations for universal sentence representatio...
متن کاملMulti-Level ResNets with Stacked SRUs for Action Recognition
Most existing Convolutional Neural Networks(CNNs) used for action recognition are either difficult to optimize or underuse crucial temporal information. Inspired by the fact that the recurrent model consistently makes breakthroughs in the task related to sequence, we propose a novel Multi-Level Recurrent Residual Networks(MRRN) which incorporates three recognition streams. Each stream consists ...
متن کاملEffective Multi-Modal Retrieval based on Stacked Auto-Encoders
Multi-modal retrieval is emerging as a new search paradigm that enables seamless information retrieval from various types of media. For example, users can simply snap a movie poster to search relevant reviews and trailers. To solve the problem, a set of mapping functions are learned to project high-dimensional features extracted from data of different media types into a common lowdimensional sp...
متن کاملStacked Cross Attention for Image-Text Matching
In this paper, we study the problem of image-text matching. Inferring the latent semantic alignment between objects or other salient stuffs (e.g. snow, sky, lawn) and the corresponding words in sentences allows to capture fine-grained interplay between vision and language, and makes image-text matching more interpretable. Prior works either simply aggregate the similarity of all possible pairs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017